

Fundação CECIERJ – Vice Presidência de Educação Superior a Distância

AP1- CÁLCULO II-2009/2 Gabarito

 1^a Questão (2 pontos) Seja R a região limitada pelas curvas dadas

$$y = \sqrt{x}$$
, $y = e^x$, $x = 0$, $x = 1$.

- a) Esboce a região R .
- **b)** Represente a área de R por uma ou mais integrais em relação à variável x.
- c) Represente a área de R por uma ou mais integrais em relação á variável y.
- d) Calcule a área da região ${\cal R}\,$ (Use a representação mais conveniente). Solução
 - (a) A Região ${\cal R}$ é mostrada na Figura 1

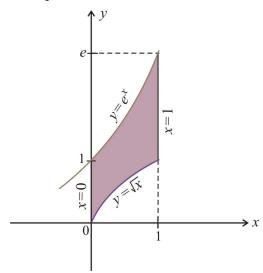


Figura 1

(b) Na Figura 2 mostramos também um retângulo típico (ou representativo) vertical na região.

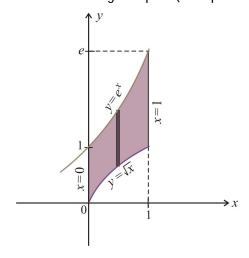


Figura 2

Neste caso a representação da área é feita por uma integral em relação à variável x:

$$A(R) = \int_{0}^{1} (e^{x} - \sqrt{x}) dx$$

(c) Dessa forma a região ${\cal R}$ precisa ser dividida em duas regiões, na Figura 3 mostramos um retângulo representativo horizontal em cada região.

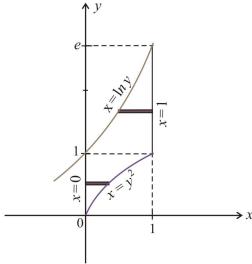


Figura 3

Neste caso a representação da área é feita por duas integrais em relação à variável y:

$$A(R) = \int_{0}^{1} (y^{2} - 0) dy + \int_{1}^{e} (1 - \ln y) dy$$

(d) Observe-se que a representação mais conveniente é neste caso a representação em relação à variável x

$$A(R) = \int_{0}^{1} (e^{x} - \sqrt{x}) dx = \int_{0}^{1} (e^{x} - x^{\frac{1}{2}}) dx = e^{x} - 2\frac{x^{\frac{3}{2}}}{3} \bigg|_{0}^{1}$$
$$= e^{1} - \frac{2}{3} - e^{0} = e - \frac{2}{3} - 1 = e - \frac{5}{3} \text{ unidades de área.}$$

2ª Questão (3,0 pontos) -

(a) Derive a seguintes funções:

i)
$$f(x) = 2^{\cos(x^2)} \left(1 + \cos^2 x\right)^{\sqrt{2}}$$

ii)
$$g(x) = x^{(\ln 2)/(1 + \ln x)}$$

(b) Calcule o limite seguinte: $\lim_{x \to +\infty} \left(1 + \frac{3}{x} + \frac{5}{x^2}\right)^x$.

(a) i)

$$f(x) = 2^{\cos(x^2)} \left(1 + \cos^2 x \right)^{\sqrt{2}}$$

$$f'(x) = 2^{\cos(x^2)} \left(\left(1 + \cos^2 x \right)^{\sqrt{2}} \right)' + \left(2^{\cos(x^2)} \right)' \left(1 + \cos^2 x \right)^{\sqrt{2}}$$

$$f'(x) = 2^{\cos(x^2)} \left(\sqrt{2} \left(1 + \cos^2 x \right)^{\sqrt{2} - 1} \left(-2\cos x \sin x \right) \right) + \left(2^{\cos(x^2)} \left(-\sin(x^2) \right) 2x \ln 2 \right) \left(1 + \cos^2 x \right)^{\sqrt{2}}$$

Ou também

$$f'(x) = 2^{\cos(x^2)+1} \left(1 + \cos^2 x\right)^{\sqrt{2}-1} \left(-\sqrt{2}\cos x \sec x - x \ln 2 \sec (x^2) \left(1 + \cos^2 x\right)\right).$$

Ou ainda

$$f'(x) = -2^{\cos(x^2)+1} \left(1 + \cos^2 x\right)^{\sqrt{2}-1} \left(\sqrt{2}\cos x \sec x + x \ln 2 \sec (x^2) \left(1 + \cos^2 x\right)\right).$$

ii) Observe que
$$g(x) = x^{(\ln 2)/(1 + \ln x)} = e^{\ln x^{(\ln 2)/(1 + \ln x)}} = e^{\frac{(\ln 2) \ln x}{(1 + \ln x)}}$$

$$g'(x) = e^{\frac{(\ln 2) \ln x}{(1 + \ln x)}} \left(\frac{(\ln 2) \ln x}{(1 + \ln x)} \right)' = x^{(\ln 2)/(1 + \ln x)} \left(\frac{(1 + \ln x) \frac{(\ln 2)}{x} - \frac{(\ln 2)}{x} \ln x}{(1 + \ln x)^2} \right)$$

$$= x^{(\ln 2)/(1 + \ln x)} \frac{(\ln 2)}{x(1 + \ln x)^2}$$

(b)

Observe que o limite dado e uma forma indeterminada do tipo $(1)^{\infty}$

$$\lim_{x \to +\infty} \left(1 + \frac{3}{x} + \frac{5}{x^2} \right)^x = \lim_{x \to +\infty} e^{x \ln(1 + \frac{3}{x} + \frac{5}{x^2})} = e^{\lim_{x \to +\infty} x \ln(1 + \frac{3}{x} + \frac{5}{x^2})}$$
 (*)

Observe que
$$\lim_{x \to +\infty} x \ln\left(1 + \frac{3}{x} + \frac{5}{x^2}\right) \to +\infty.0$$
 e que $\lim_{x \to +\infty} \frac{\ln\left(1 + \frac{3}{x} + \frac{5}{x^2}\right)}{\frac{1}{x}} \to \frac{0}{0}$.

Podemos aplicar L'Hôpital ao último limite logo

$$\lim_{x \to +\infty} \frac{\ln\left(1 + \frac{3}{x} + \frac{5}{x^{2}}\right)}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x} + \frac{5}{x^{2}}\right)' / \left(1 + \frac{3}{x} + \frac{5}{x^{2}}\right)}{-\frac{1}{x^{2}}}$$

$$= \lim_{x \to +\infty} \frac{\left(-\frac{3}{x^{2}} - \frac{10}{x^{3}}\right) / \left(1 + \frac{3}{x} + \frac{5}{x^{2}}\right)}{-\frac{1}{x^{2}}} = \lim_{x \to +\infty} \left(-x^{2}\right) \left(-\frac{3}{x^{2}} - \frac{10}{x^{3}}\right) / \left(1 + \frac{3}{x} + \frac{5}{x^{2}}\right)$$

$$= \lim_{x \to +\infty} \left(3 + \frac{10}{x}\right) / \left(1 + \frac{3}{x} + \frac{5}{x^{2}}\right) = 3$$
(**)

Substituindo (**) em (*) temos que $\lim_{x \to +\infty} \left(1 + \frac{3}{x} + \frac{5}{x^2}\right)^x = e^3$

3ª Questão (2,0 pontos) - Calcule:

a)
$$\int x \arctan(x^2) dx$$

$$\int x \arctan(x^2) dx = \int \underbrace{\arctan(x^2)}_{u} \underbrace{x dx}_{dv}$$

Sejam
$$\begin{cases} u = \operatorname{arctg} x^2 & \Rightarrow \quad du = \frac{2x}{1 + (x^2)^2} dx = \frac{2x}{1 + x^4} dx \\ dv = x dx & \Rightarrow \quad v = \frac{x^2}{2} \end{cases}$$

Então usando integração por partes, temos

$$\int \underbrace{\arctan(x^2)}_{u} \underbrace{x \, dx}_{\text{dv}} = \underbrace{\arctan(x^2)}_{u} \underbrace{\frac{x^2}{2}}_{v} - \int \underbrace{\frac{x^2}{2}}_{v} \underbrace{\frac{2x \, dx}{1+x^4}}_{\text{du}} = \underbrace{(\frac{x^2}{2})\arctan(x^2)}_{\text{arctg}} - \int \underbrace{\frac{x^3 \, dx}{1+x^4}}_{\text{du}}$$

$$\int x \arctan(x^2) dx = \frac{x^2}{2} \arctan(x^2) - \frac{1}{4} \int \frac{4x^3}{1+x^4} dx = \frac{x^2}{2} \arctan(x^2) - \frac{1}{4} \ln(1+x^4) + C$$

$$\mathbf{b)} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot g^3(x) \csc^2 x \, dx$$

Fazendo a substituição

$$u = \cot g(t) \implies du = -\csc^2(t) dt$$

Fazendo a mudança dos limites de integração

se
$$t = \frac{\pi}{4}$$
 $\Rightarrow u = 1$ se $t = \frac{\pi}{2}$ $\Rightarrow u = \cot(\frac{\pi}{2}) = 0$

Obtemos
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot g^3(x) \csc^2 x \, dxt = -\int_{1}^{0} u^3 du = \int_{0}^{1} u^3 du = \frac{u^4}{4} \bigg]_{0}^{1} = \frac{1}{4}$$

Solução

4ª Questão (3,0 pontos) – Dada a função $f(x) = e^{-x^2/2}$, determine:

- a) (0,2 pontos) o domínio de f;
- b) (0,5 pontos) as assíntotas horizontais e verticais (se existirem) para o gráfico de f;
- c) (0,5 pontos) os intervalos em que f é crescente e os intervalos em que f é decrescente;
- d) (0,3 pontos) os pontos de máximos e/ou mínimos relativos e absolutos de f (se existirem);
- e) (0,5 pontos) os intervalos em que o gráfico de f é côncavo para baixo e os intervalos em que o gráfico de f é côncavo para cima;
- f) (0,3 pontos) os pontos de inflexão (se existirem);
- g) (0,5 pontos) um esboço do gráfico de f;
- h) (0,2 pontos) a imagem de f.

Solução

- a) (0,2 pontos). Dom $(f) = \mathbb{R}$
- b) (0,5 pontos)

Note que f é uma função continua definida em todo $\mathbb R$ logo não existem assíntotas verticais . Assíntotas horizontais:

$$\lim_{x\to +\infty} e^{-x^2/2} = \lim_{x\to +\infty} \frac{1}{e^{x^2/2}} = 0 \quad \text{e} \quad \lim_{x\to -\infty} e^{-x^2/2} = \lim_{x\to -\infty} \frac{1}{e^{x^2/2}} = 0 \text{ , logo } y = 0 \text{ é a única assíntota horizontal.}$$

c) (0,5 pontos) $f'(x) = e^{-x^2/2}(-x)$.

Como $e^{-x^2/2}$ é sempre maior que zero, temos que $f'(x)=0 \Leftrightarrow x=0$. Portanto x=0 é um número crítico.

Se $x < 0 \implies f'(x) > 0$, logo de aqui deduzimos que f é crescente em $(-\infty, 0)$.

Se $x > 0 \implies f'(x) < 0$, logo deduzimos que f é decrescente no intervalo $(0, +\infty)$.

d) (0,3 pontos) Do item (c) e o teste da derivada 1ª podemos afirmar que em x=0, existe um máximo relativo e $f(0)=\frac{1}{e^0}=1$. Assim (0,1) é um ponto de máximo relativo. Como x=0 é o único ponto crítico no intervalo $(-\infty,+\infty)$, podemos dizer também que existe um máximo absoluto nesse ponto.

e) (0,5 pontos)

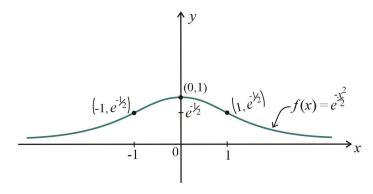
$$f''(x) = e^{-x^2/2}(-x)' + (e^{-x^2/2})'(-x) = -e^{-x^2/2} + e^{-x^2/2}(-x)(-x)$$
Logo
$$f''(x) = -e^{-x^2/2} + x^2e^{-x^2/2} = (x^2 - 1)e^{-x^2/2} = (x - 1)(x + 1)e^{-x^2/2}$$

Assim,
$$f''(x) = 0 \iff x^2 - 1 = 0 \iff x^2 = 1 \iff x = \pm 1$$

Intervalos:	$-\infty < x < -1$	-1 < x < 1	$1 < x < +\infty$
Sinal de $e^{-x^2/2}$	+	+	+
Sinal de $(x-1)$	_	_	+
Sinal de $(x+1)$	_	+	+
Sinal de f''	+	_	+
Gráfico de f	\supset	\cap	O

Portanto, o gráfico de f é côncavo para baixo no intervalo (-1,1) e o gráfico de f é côncavo para cima no intervalo $(-\infty,-1)\bigcup(1,+\infty)$.

- f) (0,3 pontos) Existe mudança de concavidade nos pontos (-1,f(-1)) e (1,f(1)) observe que $f(1)=e^{-\frac{1}{2}}=f(-1)$, e existe reta tangente nesses pontos já que f'(1) e f'(-1) existe. Então $(1,e^{-\frac{1}{2}})$ e $(-1,e^{-\frac{1}{2}})$ são pontos de inflexão.
- g) (0,5 pontos) Esboço do gráfico de f .



h) (0,2 pontos) Do gráfico de f observamos que $\operatorname{Im}(f) = (0,1]$.